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== Advanced/related Topics

e Spectral embedding: simplex cluster structure

e Perturbation analysis

e K-means clustering in embedded space

e Equivalence of K-means clustering and PCA

e Connectivity networks: scaled PCA & Green'’s function

e Extension to bipartite graphs: Correspondence
analysis

e Random talks and spectral clustering

e Semi-definite programming and spectral clustering

e Spectral ordering (distance-sensitive ordering)

e Webpage spectral ranking: Page-Rank and HITS
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erecen’] 8 Spectral Embedding:
) Simplex Cluster Structure

» Compute K eigenvectors of the Laplacian.
» Embed objects in the K-dim eigenspace
What is the structure of the clusters?

Simplex Embedding Theorem.

Assume objects are well characterized by spectral
clustering objective functions. In the embedded
space, objects aggregate to K distinct centroids:
» Centroids locate on K corners of a simplex
* Simplex consists K basis vectors + coordinate origin
 Simplex is rotated by an orthogonal transformation T

» Columns of T are eigenvectors of a K x K embedding
matrix [
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| K-way Clustering Objectives

_ s(C,,Cq)  s(Cyp,Cy) s(C,,G-Cy)
J= =
ZlSp<qu p(Cp) * p(Cq) Zk p(Cp)

for Ratio Cut
ne = Cy |

P(C)=1d(C) = ZiDCk di for Normalized Cut
$(Cy,Cy) = Zimk’jmk W for MinMaxCut

G - C, is the graph complement of C,
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e Simplex Spectral Embedding Theorem

Simplex Orthogonal
Transform Matrix

T = (tl""’tK)

T are determined by: 'ty =4 t,

-1_ _1
Spectral Perturbation Matrix [=Q 2[Q 2

hy, =S, - =Sk Spq =S(C;,Cy)

= _ _821 h22 Tt _SZK =

= SR 4 Z‘tlolpvtkskIO
—s¢; —Ska - Mk Q =diag[o(C,),---, p(Cy )]
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S| Properties of Spectral Embedding

e Original basis vectors: Ny
—
h, =(0---0,1---1,0---0)/

» Dimension of embedding is k-1: (0,, ... k)
- g,=(1,...,1)T is constant & trivial
— Eigenvalues of I (=eigenvalues of D-W)

— Eigenvalues determine how well clustering objective
function characterize the data

e Exact solution for K=2
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E_—} 2-way Spectral Embedding
(Exact Solution)

Eigenvalues
- s(C,Cy) + s(C,Cp) - s(C,,Cy) + s(C,,Cp) A _8(C,Cy) + s(C,Cp)

RU7 0 nGy) TN dc)  d(Cy) MM s(CLCh)  S(C,,Cy)

Recover the original 2-way clustering objectives

For Normalized Cut, orthogonal transform T rotates

hy =(1---1,0---0)", h, =(0---0,1---1)"

into T T
b :(]_]_) ’ q2 = (a’...’a’—b’...’—b)

Spectral clustering inherently consistent! i e a1 ko0
:
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Perturbation Analysis
Wgq=ADg Wz=(D*WDY?)z=4z q=D"*z

Assume data has 3 dense clusters sparsely connected.

W, W, W ¢
W =|W5y Wo, Wos
W, WG, Wi ©

Off-diagonal blocks are between-cluster connections,

assumed small and are treated as a perturbation
(Ding et al, KDD’01) 8
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: : Perturbation Analysis
Oth order
W, L
WO = W R W
22 . ©)
W3 L Wss
1st order:
- ~ (0 A -
Wy, Wi Wy, ‘Wil) Wip W3
1) _ g * - (0) T
W® = w,, Wog WO =l Wy, Wy, =W, Waq
N N N ~ (0
Way  Wap Wy Way Wy, -W;;
~(0) = ~-1/2 -1/2
W pg = Dpp “Wpg Dag
T — -1/2 -1/2
qu _(Dpl+Dp2+Dp3) qu(Dq1+Dq2 +Dq3)
9
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ol K-means clustering

» Developed in 1960’s (Lloyd, MacQueen, etc)
o Computationally Efficient (order-mN)
» Widely used in practice

— Benchmark to evaluate other algorithms

Given n points in m-dim: X = (X, X,,-**, X.)

K
: — 2
mindg =>" >l ol

k=1 i0OC
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ereced] & K-means Clustering in
Spectral Embedded Space

Simplex spectral embedding theorem provides
theoretical basis for K-means clustering in the
embedded eigenspace
— Cluster centroids are well separated (corners of the
simplex)

— K-means clustering is invariant under (i) coordinate
rotation x — Tx, and (ii) shiftx - x+a

— Thus orthogonal transform T in simplex embedding un-
necessary

e Many variants of K-means (Ng et al, Bach &
Jordan, Zha et al, Shi & Xu, etc)

11
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We have proved
Spectral embedding + K-means clustering
IS the appropriate method

We now show :
K-means itself is solved by PCA

12
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= 1 Equivalence of K-means Clustering
and Principal Component Analysis

» Cluster indicators specify the solution of K-means
clustering

e Principal components are eigenvectors of the
Gram (Kernel) matrix = data projections in the
principal directions of the covariance matrix

e Optimal solution of K-means clustering:
continuous solution of the discrete cluster
indicators of K-means are given by
Principal components

(Zha et al, NIPS’01; Ding & He, 2003)

13
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=L Principal Component Analysis (PCA)

e Widely used in large number of different fields

— Best low-rank approximation (SVD Theorem, Eckart-
Young, 1930) : Noise reduction

— Unsupervised dimension reduction
— Many generalizations

e Conventional perspective is inadequate to explain
the effectiveness of PCA

e New results: Principal components are cluster
indicators for well-motivated clustering objective

14
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—} Principal Component Analysis

n points in m-dim: X =(X, X, 0, X))

Principal directions: U,
Covariance S = XX XX Tu, =AUy

Principal components: V
Gram (Kemel) matrix XTX X' XV, = AV,

m
Singular Value Decomposition: X = ZAkukVI
k=1 s
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M- 2-way K -means Clustering
Cluster membership q(i):{t/nzlnln if i0C,

indicator: —yn/nn if i0C,

,8(C.C)) _d(C,.C) _d(CZ,cz)}
nn, n; n;

_nn

JK:I’]<X2>—JD, Jp = . {

Define distance matrix: D =(d;), d; =, —x[°
J,=-q'Dq=-q"Dq=2q"X"Xq
D s the centered distance matrix

minJ, = maxJ,

16
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—} 2-way K-means Clustering

Cluster indicator satisfy: >.q()=0,>, q°(i) =1
Relax the restriction g (i) take discrete values.

Let it take continuous values in [-1,1]. Solution
for g is the eigenvector of the Gram matrix.

Theorem: The (continuous) optimal solution of g
Is given by the principal component v; .

Clusters C;, C, are determined by:
Cy ={ilvy(i) < 0},C, ={i| vy (i) 2 0}

Once ¢, G, are computed, iterate K<-mean to
convergence 7
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=  Multi-way K-means Clustering

Unsigned Cluster membership indicators A, -, f:

C, G G

= (hy, h,, ;)

o O O
R O O O

18
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.  Multi-way K-means Clustering
K

For K2, JK:ZiX?—Z%Zi,jDCkXFXJ‘

k=1

(Unsigned) Clusternmembership indicators Ay, -, h:
r—’L T
:(00000’10001’000 O) /nk

DI Zth Xh,
H :(hlr”, h)

:fo—Tr(HkaTXHk)
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=  Multi-way K-means Clustering

Regularized Relaxation of K-means Clustering

K
Redundancy in h,, -, he: Y n?h, =e =(11---1)"
k=1

Transform to signed indicator vectors g, - g, via
the k x k orthogonal matrix T:

(01, qy) = (hy,---, h )T Q - H T

12 )T 2
Require 15t column of T = (N n'?)"/n

Thus @, =e/n'* = const

20
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Regularized Relaxation of K-means Clustering
Je =Tr(Y TY) —Tr(Q;_lYTYQk_l)
Qk—l = (qzv'"qk)

Theorem: The optimal solutions of g, - g, are
given by the principal components v, - y. J IS
bounded below by total variance minus sum of
K eigenvalues of covariance:

(Regularized relaxation)

— K- -
ny?=> A <minJ, <ny’
k=1

21
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. Scaled PCA
similarity matrix S=(s;) (generated from XXT)
D =diag(d,,---,d,) d; =S,

Nonli scaling: @ —Piep: § — 12

onlinear re-scaling: g —pzgp 5 =5, /(Si_sj_)
ApplySVDon S =

S=D*SD?=D*Y 7,4, 71 D = D{Z O qI}D

k k

qx = D27z, is the scaled principal component

Subtract trivial component A, =1, z,= dY ?fs.., q,=1

= S—dd'/s.= Dkz_lqk)lk q, D
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=11 Optimality Properties of Scaled PCA

Scaled principal components have optimality properties:

Ordering
— Adjacent objects along the order are similar
— Far-away objects along the order are dissimilar

— Optimal solution for the permutation index are given by
scaled PCA.

Clustering
— Maximize within-cluster similarity
— Minimize between-cluster similarity

— Optimal solution for cluster membership indicators given
by scaled PCA.

23
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Bl Difficulty of K-way clustering

» 2-way clustering uses a single eigenvector
» K-way clustering uses several eigenvectors
» How to recover O-1 cluster indicators H?
eigenvectors: Q =(0y,..., dy)

has both positive and negative entries

indicators : H = (hy,---,h,) Q=HT
Avoid computing the transformation T:

Do K-means, which is invariant under T
 Compute connectivity network QQT, which cancelg T
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Connectivity Network

C. = 1 if i, belong tosame cluster
. 0 otherwise

K
SPCA provides COD) gy D

k=1
< 1
. _ T
Green’s function: C=G= qu Ay
k=2 1_Ak
< T
iecti ix: C=P=
Projection matrix: éqk Oy oing et 200
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Connectivity network

Similar to Hopfield network
Mathematical basis: projection matrix
Show self-aggregation clearly

Drawback: how to recover clusters
— Apply K-means directly on C

— Use linearized assignment with cluster crossing
and spectral ordering (ICML’04)

26
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Similarity matrix W

A, =0.300,4, =0.268
| Between-cluster connections suppressed

Connectivity
matrix

# \Within-cluster connections enhanced

Effects of self-aggregation
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‘ﬁ\"l Connectivity of Internet Newsgroups

(Brs=ricy Lam]
NG2: comp.graphics 100 articles from each group.
NG9: rec.motorcycles 1000 words
NG10: rec.sport.baseball Tf.idf weight. Cosine similarity

NG15:sci.space

i 0,
NG18:talk.politics.mideast Spectral Clustering 89%

Direct K-means 66%

cosine similarity Connectivity matrix

e 28

Tutorial on Spectral Clustering, ICML 2004, Chris Ding © University of California




M Spectral embedding is not
topology preserving

700 3-D data points form -
2 interlock rings )

In eigenspace, they
shrink and separate

o005 o Q008

29
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e Correspondence Analysis (CA)

Mainly used in graphical display of data
Popular in France (Benzécri, 1969)
Long history

— Simultaneous row and column regression (Hirschfeld,

1935)

— Reciprocal averaging (Richardson & Kuder, 1933;
Horst, 1935; Fisher, 1940; Hill, 1974)

— Canonical correlations, dual scaling, etc.

Formulation is a bit complicated (“convoluted”
Jolliffe, 2002, p.342)

“A neglected method”, (Hill, 1974)

30
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.| Scaled PCA on a Contingency Table
= Correspondence Analysis

. _ . .= _ -1 -1 o _ 12
Nonlinear re-scaling: P = D.:PD?, ;=R /(pi_pj.)
Apply SVD on P Subtract trivial component

c

_1 C= (p.11' Y p.n)T
2Vk

P-rc'/p.=D,Y fA g D, =P
k=1

f= D_%uk’ 9=D

r C

are the scaled row and column principal
component (standard coordinates in CA)
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e Information Retrieval

Bell Lab tech memos

5 comp-sci and 4 applied-math memo titles:

C1: Human machine interface for lab ABC computer applications
C2: A survey of user opinion of computer system response time
C3: The EPS user interface management system

C4: System and human system engineering testing of EPS

C5: Relation of user-perceived response time to error management
M1: The generation of random, binary, unordered trees

M2: The intersection graph of paths in trees

M3: Graph minors 1V: widths of trees and well-quasi-ordering

M4: Graph minors: A survey

32
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e~ & Word-document matrix: row/col clustering

woras49¢sica |cl |¢3 |c5 [c2 |m4|m3|m2|ml
human 1 1
EPS
interface 1
system 2
computer
user

response
time

S

survey

minors
graph
tree 1 |1 |[1s3
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Bipartite Graph: 3 types of Connectivity networks

F . F.Gy F
T — K" K K™~K _ | T
QKQK |:GK FKT GKG1:| QK _(q1: ,qK) |:GKj|

FET = e /2s, 0 row-row clustering
K" K T
0 e e /2s,,
.
e.e. /2s 0
GGy =| /2% ; Column-column clustering
0 e, er /25,
.
F.Gy = €L, /2511 TO Row-column association
0 e el /25,

34
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e EXAMple -
e rant] |
| column-column: GGT
St -
. Tt T row-row: FFT
— _,.-—--"" - r
Original data matrix f
A, =0.456,A, =0.477
i _ row-column: FGT

35

Internet Newsgroups b i aiapce

1. comp graphics
2. rec.motorcycles
Peg

directary 3. rec sport baseball

algarthm
Felygen comat
kalvin slew  spaoawalk

- b U  unch
speady Rochetry d.ggmmnpnywst
ati dri burst
river urst &
ham ballan
a- biker
insurance
onda®

Simultaneous clustering e

of documents and words

05—

carear
sabo

fan =%
faklar dodger opez
batter

01 bat
alomar
umpire
[
abs
Profestion Matrix for newsgro up articlas
| 1 | | 1 1 | 1 )
008 004 0o o 0.02 0.04 006 008 a1
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] Random Walks and Normalized Cut

Similarity matrix W, P = D‘]W Stochastic matrix
nT P = r[T = equilibrium distribution: 71 = d
Px=Ax = Wx=ADx = (D-W)x=(1-A)Dx

Random walks between A,B:

] _P(A-B), P(B-A
NormCut — I'I(A) H(B)

(Meila & Shi, 2001)

PageRank: P= arl_DO"ult +(1- cr)eeT

Tutorial on Spectral Clustering, ICML 2004, Chris Ding © University of California
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rereed] '1 Semi-definite Programming for
m} -
Normalized Cut

Normalized Cut : Yy = DY2(0---0,1--1,0--0)" /|| D¥?h, ||

W = D Y2wpY2

Optimize : inn Tr(YT (I -W)Y),subjectto YTY =1

ST -WYY']  =minTr[(1-W)z]  (Z=YY]

st.Z>0, 72-0,2d=d,TrZz=K, Zz=2"

Compute Z via SDP. Z=Y’Y’T,
=D-Y2y’ K-meanson Y.

(Xing & Jordan, 2003)

Z = connectivity network

38
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Spectral Ordering

Hill, 1970, spectral embedding
Find coordinate x to minimize

J :Z(xi =x;)*w; =x" (D =W)X
ij

Solution are eigenvectors of Laplacian

Barnard, Pothen, Simon, 1993, envelop reduction of sparse
matrix: find ordering such that the envelop is minimized

min Y (i-)?w; = min) (75 -7;)*w
ij ij

39
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=214 Distance-sensitive ordering

Ordering is determined by permutation indexes

4-variable. For a given ordering, there are 3
distance=1 pairs, two d=2 pairs, one d=3 pair.

0123 n(,---,n) = (m,--,m,)
012 n—d
0 (1) ‘Jd(n) _Zi:]_ S7Ti1”i+d

minJ, J(m) = >0 d?J, ()

The larger distance, the larger weights. Large distance
similarities reduced more than small distance similarities

(Ding & He, ICML’04) 40
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~=1]  Distance-sensitive ordering

[Brser. e L am BN

Theorem. The continuous optimal solution for the
discrete inverse permutation indexes are given by

the scaled principal component Q.

The shifted and scaled inverse permutation indexes

T =(n+1)/2 _{1—n 3-n n—]}
! n/2 n ' n ' n
Relax the restriction on g. Allow it be continuous.
Solution for g becomes the eigenvector of

(D-S)q=ADg

4
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J d= (random)

o AR e e L
oY b AT

X .' l:‘!'—'. -ﬂ:?ﬁ;‘.‘u_“ =

r,_,=3.39

. 42
C. Ding, RECOMB 2002
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ererend] Webpage Spectral Ranking
Rank webpages from the hyperlink topology.
L : adjacency matrix of the web subgraph

PageRank (Page & Brin): rank according to
principal eigenvector Tt (equilibrium distribution)

il =, T =08D, L +0.2ee’

HITS (Kleinberg): rank according to
principal eigenvector of authority matrix

(L'Dg=Aq

Eigenvectors can be obtained in closed-form "
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"F‘N Webpage Spectral Ranking

HITS (Kleinberg) ranking algorithm

Assume web graph is fixed degree sequence
random graph (Aiello, Chung, Lu, 2000)

Theorem. Eigenvalues of LTL
A >h>A,>hy, > ' hi:di_ni

dy d, d,

A= A=h" A,

Eigenvectors:

U, =( )!

Principal eigenvector u, is monotonic decreasing
if dl > d2 > d3 Sl
— HITS ranking is identical to indegree ranking

(Ding, et al, SIAM Review "04) 44
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corrent] & Webpage Spectral Ranking

PageRank: weight normalization
HITS : mutual reinforcement

Combine PageRank and HITS. Generalize. =

Ranking based on a similarity graph § = I'DLL

out

Random walks on this similarity graph
has th ilibri istribution:
as the equilibrium distribution (dl,dz,---,dn)TIZE

PageRank ranking is identical to indegree ranking

(1%t order approximation, due to combination of PageRank & HITS)

(Ding, et al, SIGIR'%)
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':—’Eq PCA: a Unified Framework
for clustering and ordering

PCA is equivalent to A~means Clustering

Scaled PCA has two optimality properties

— Distance sensitive ordering

— Min-max principle Clustering

SPCA on contingency table = Correspondence Analysis
— Simultaneous ordering of rows and columns

— Simultaneous clustering of rows and columns

Resolve open problems

— Relationship between Correspondence Analysis and PCA (open
problem since 1940s)

— Relationship between PCA and K-means clustering (open
problem since 1960s)

46
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Spectral Clustering:
a rich spectrum of topics
a comprehensive framework for learning

A tutorial & review of spectral clustering

Tutorial website will post all related papers (send your papersl?7

Tutorial on Spectral Clustering, ICML 2004, Chris Ding © University of California

-~

e |1

M Acknowledgment

Hongyuan Zha, Penn State

Horst Simon, Lawrence Berkeley Lab
Ming Gu, UC Berkeley

Xiaofeng He, Lawrence Berkeley Lab
Michael Jordan, UC Berkeley

Michael Berry, U. Tennessee, Knoxville
Inderjit Dhillon, UT Austin

George Karypis, U. Minnesota

Haesen Park, U. Minnesota

Work supported by Office of Science, Dept. of Energy

48
Tutorial on Spectral Clustering, ICML 2004, Chris Ding © University of California

24



